โš ๏ธ์ด ์‚ฌ์ดํŠธ์˜ ์ผ๋ถ€ ๋งํฌ๋Š” Affiliate ํ™œ๋™์œผ๋กœ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.

๐Ÿš€ ํ…์„œํ”Œ๋กœ์šฐ 2.x ๊ณ ๊ธ‰ ๊ธฐ๋Šฅ ํŒŒํ—ค์น˜๊ธฐ! ๐Ÿง โœจ

๐Ÿš€ ํ…์„œํ”Œ๋กœ์šฐ 2.x ๊ณ ๊ธ‰ ๊ธฐ๋Šฅ ํŒŒํ—ค์น˜๊ธฐ! ๐Ÿง โœจ

ํ˜น์‹œ ํ…์„œํ”Œ๋กœ์šฐ 2.x, ๋ญ”๊ฐ€ ๋” ๊นŠ์ด ์žˆ๊ฒŒ ํ™œ์šฉํ•˜๊ณ  ์‹ถ์€๋ฐ ๋ง‰๋ง‰ํ•˜์‹ ๊ฐ€์š”? ๐Ÿค” Autograph, Custom Layers, Custom Training Loop… ์ด๋ฆ„๋งŒ ๋“ค์–ด๋„ ๋ญ”๊ฐ€ ์—„์ฒญ๋‚œ ๊ธฐ๋Šฅ๋“ค ๊ฐ™์ง€๋งŒ, ์‹ค์ œ๋กœ ์‚ฌ์šฉํ•ด๋ณด๋ฉด ์ƒ๊ฐ๋ณด๋‹ค ํ›จ์”ฌ ๊ฐ•๋ ฅํ•˜๊ณ  ์œ ์šฉํ•˜๋‹ต๋‹ˆ๋‹ค! ๐Ÿ˜Ž ์ด ๊ธฐ๋Šฅ๋“ค์„ ๋งˆ์Šคํ„ฐํ•˜๋ฉด ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ  ์‹ค๋ ฅ์ด ํ•œ ๋‹จ๊ณ„ ์—…๊ทธ๋ ˆ์ด๋“œ๋  ๊ฑฐ์˜ˆ์š”! ๐Ÿคฉ ๋†“์น˜๋ฉด ํ›„ํšŒํ•  ๊ฟ€ํŒ๋“ค, ์ง€๊ธˆ ๋ฐ”๋กœ ์•Œ์•„๋ณผ๊นŒ์š”? ๐Ÿƒโ€โ™€๏ธ๐Ÿƒโ€โ™‚๏ธ

ํ•ต์‹ฌ ์š”์•ฝ 3๊ฐ€์ง€! ๐Ÿ“Œ

  • Autograph: ํŒŒ์ด์ฌ ์ฝ”๋“œ๋ฅผ ํ…์„œํ”Œ๋กœ์šฐ ๊ทธ๋ž˜ํ”„๋กœ ์ž๋™ ๋ณ€ํ™˜! ์ฝ”๋“œ ์ˆ˜์ • ์—†์ด ์„ฑ๋Šฅ ํ–ฅ์ƒ! ๐Ÿš€
  • Custom Layers: ๋‚˜๋งŒ์˜ ๋ ˆ์ด์–ด๋ฅผ ๋งŒ๋“ค์–ด์„œ ๋ชจ๋ธ์˜ ์œ ์—ฐ์„ฑ์„ ๊ทน๋Œ€ํ™”! ๐ŸŽจ
  • Custom Training Loop: ํ›ˆ๋ จ ๊ณผ์ •์„ ์™„๋ฒฝํ•˜๊ฒŒ ์ œ์–ด! ๋งž์ถคํ˜• ํ›ˆ๋ จ ์ „๋žต ๊ตฌํ˜„! ๐ŸŽ›๏ธ

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์™œ ์•Œ์•„์•ผ ํ• ๊นŒ์š”? ๐Ÿค”

๋”ฅ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด์—๊ฒŒ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์€ ์„ ํƒ์ด ์•„๋‹Œ ํ•„์ˆ˜! ๐Ÿ”‘ ํ…์„œํ”Œ๋กœ์šฐ๋Š” ๊ตฌ๊ธ€์—์„œ ๋งŒ๋“  ์˜คํ”ˆ์†Œ์Šค ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ, ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์–ด์š”. ๐ŸŒŽ ์ด๋ฏธ์ง€ ์ธ์‹, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ, ์Œ์„ฑ ์ธ์‹ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ํ™œ์šฉํ•œ ํ˜์‹ ์ ์ธ ๊ธฐ์ˆ ๋“ค์ด ์Ÿ์•„์ ธ ๋‚˜์˜ค๊ณ  ์žˆ๋‹ต๋‹ˆ๋‹ค. ๐Ÿค– ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์„ ์ตํ˜€๋‘๋ฉด ๋ฏธ๋ž˜ ์‹œ๋Œ€์— ๊ผญ ํ•„์š”ํ•œ ํ•ต์‹ฌ ์ธ์žฌ๋กœ ๊ฑฐ๋“ญ๋‚  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! ๐Ÿ˜‰


Autograph: ํŒŒ์ด์ฌ ์ฝ”๋“œ๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ! ๐Ÿโžก๏ธโš™๏ธ

Autograph๋Š” ํ…์„œํ”Œ๋กœ์šฐ 2.x์—์„œ ์ œ๊ณตํ•˜๋Š” ์ •๋ง ๋ฉ‹์ง„ ๊ธฐ๋Šฅ ์ค‘ ํ•˜๋‚˜์˜ˆ์š”. โœจ ํŒŒ์ด์ฌ ์ฝ”๋“œ๋ฅผ ํ…์„œํ”Œ๋กœ์šฐ ๊ทธ๋ž˜ํ”„๋กœ ์ž๋™์œผ๋กœ ๋ณ€ํ™˜ํ•ด์ค€๋‹ค๋Š” ์‚ฌ์‹ค! ์ด๊ฒŒ ์™œ ์ค‘์š”ํ•˜๋ƒ๊ตฌ์š”? ํ…์„œํ”Œ๋กœ์šฐ ๊ทธ๋ž˜ํ”„๋กœ ๋ณ€ํ™˜ํ•˜๋ฉด ์—ฐ์‚ฐ ์†๋„๊ฐ€ ํ›จ์”ฌ ๋นจ๋ผ์ง€๊ณ , GPU์™€ TPU ๊ฐ™์€ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ๋ฅผ ๋” ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฑฐ๋“ ์š”. ๐ŸŽ๏ธ๐Ÿ’จ

์›๋ž˜ ํ…์„œํ”Œ๋กœ์šฐ 1.x์—์„œ๋Š” ๊ทธ๋ž˜ํ”„๋ฅผ ์ง์ ‘ ๋งŒ๋“ค๊ณ  ์„ธ์…˜์„ ์‹คํ–‰ํ•˜๋Š” ๋ณต์žกํ•œ ๊ณผ์ •์„ ๊ฑฐ์ณ์•ผ ํ–ˆ์–ด์š”. ํ•˜์ง€๋งŒ Autograph ๋•๋ถ„์— ์ด์ œ ์šฐ๋ฆฌ๋Š” ํŒŒ์ด์ฌ ์ฝ”๋“œ๋ฅผ ์งœ๋“ฏ์ด ํŽธํ•˜๊ฒŒ ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์ฃ ! ๐Ÿฅณ Autograph๊ฐ€ ์•Œ์•„์„œ ์ฝ”๋“œ๋ฅผ ์ตœ์ ํ™”๋œ ํ…์„œํ”Œ๋กœ์šฐ ๊ทธ๋ž˜ํ”„๋กœ ๋ฐ”๊ฟ”์ฃผ๋‹ˆ๊นŒ์š”. ์–ผ๋งˆ๋‚˜ ํŽธํ•ด์š”! ๐Ÿ˜Œ

import tensorflow as tf

@tf.function
def my_function(x):
  if tf.reduce_sum(x) > 0:
    return x * x
  else:
    return -x

x = tf.constant([-2, -1, 0, 1, 2])
result = my_function(x)
print(result) # ์ถœ๋ ฅ: tf.Tensor([-2 -1  0  1  4], shape=(5,), dtype=int32)

์œ„ ์ฝ”๋“œ์—์„œ @tf.function ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ๊ฐ€ ๋ฐ”๋กœ Autograph๋ฅผ ํ™œ์„ฑํ™”ํ•˜๋Š” ๋งˆ๋ฒ• ์ฃผ๋ฌธ์ด์—์š”! ๐Ÿง™ ์ด ๋ฐ์ฝ”๋ ˆ์ดํ„ฐ๋ฅผ ํ•จ์ˆ˜ ์œ„์— ๋ถ™์—ฌ์ฃผ๊ธฐ๋งŒ ํ•˜๋ฉด, ํ…์„œํ”Œ๋กœ์šฐ๊ฐ€ ์ž๋™์œผ๋กœ ํ•ด๋‹น ํ•จ์ˆ˜๋ฅผ ๊ทธ๋ž˜ํ”„๋กœ ๋ณ€ํ™˜ํ•ด์ค€๋‹ต๋‹ˆ๋‹ค. ์ฐธ ์‰ฝ์ฃ ? ๐Ÿ˜Š Autograph๋Š” if, for, while ๊ฐ™์€ ํŒŒ์ด์ฌ ์ œ์–ด๋ฌธ๋„ ์™„๋ฒฝํ•˜๊ฒŒ ์ง€์›ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ณต์žกํ•œ ๋กœ์ง๋„ ๋ฌธ์ œ์—†์ด ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ’ช

Autograph๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์ฝ”๋“œ๋ฅผ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉด์„œ๋„ ํ…์„œํ”Œ๋กœ์šฐ์˜ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ๋ˆ„๋ฆด ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! ๐Ÿ‘ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์•Œ๋ฉด ์•Œ์ˆ˜๋ก ๋งค๋ ฅ์ ์ด์ง€ ์•Š๋‚˜์š”? ๐Ÿฅฐ

Custom Layers: ๋‚˜๋งŒ์˜ ๋ ˆ๊ณ  ๋ธ”๋ก ๋งŒ๋“ค๊ธฐ! ๐Ÿงฑ๐ŸŽจ

ํ…์„œํ”Œ๋กœ์šฐ์—๋Š” ์ด๋ฏธ ๋‹ค์–‘ํ•œ ๋ ˆ์ด์–ด๋“ค์ด ์ค€๋น„๋˜์–ด ์žˆ์ง€๋งŒ, ๋•Œ๋กœ๋Š” ์šฐ๋ฆฌ๋งŒ์˜ ํŠน๋ณ„ํ•œ ๋ ˆ์ด์–ด๊ฐ€ ํ•„์š”ํ•  ๋•Œ๊ฐ€ ์žˆ์–ด์š”. ๐Ÿค” ๊ทธ๋Ÿด ๋•Œ Custom Layers ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋งˆ์น˜ ๋ ˆ๊ณ  ๋ธ”๋ก์„ ์กฐ๋ฆฝํ•˜๋“ฏ์ด ๋‚˜๋งŒ์˜ ๋ ˆ์ด์–ด๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค! ๐Ÿคฉ

Custom Layers๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ชจ๋ธ์˜ ์œ ์—ฐ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ณ , ํŠน์ • ๋ฌธ์ œ์— ํŠนํ™”๋œ ๋ ˆ์ด์–ด๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, attention mechanism์„ ๊ตฌํ˜„ํ•˜๊ฑฐ๋‚˜, ํŠน์ • ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ ˆ์ด์–ด๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์ฃ . ๐Ÿ’ก

import tensorflow as tf

class MyDenseLayer(tf.keras.layers.Layer):
  def __init__(self, units, activation=None):
    super(MyDenseLayer, self).__init__()
    self.units = units
    self.activation = tf.keras.activations.get(activation)

  def build(self, input_shape):
    self.w = self.add_weight(shape=(input_shape[-1], self.units),
                             initializer='random_normal',
                             trainable=True)
    self.b = self.add_weight(shape=(self.units,),
                             initializer='zeros',
                             trainable=True)

  def call(self, inputs):
    linear_output = tf.matmul(inputs, self.w) + self.b
    if self.activation is not None:
      return self.activation(linear_output)
    return linear_output

์œ„ ์ฝ”๋“œ๋Š” MyDenseLayer๋ผ๋Š” Custom Layer๋ฅผ ์ •์˜ํ•˜๋Š” ์˜ˆ์‹œ์˜ˆ์š”. __init__ ๋ฉ”์„œ๋“œ์—์„œ๋Š” ๋ ˆ์ด์–ด์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ดˆ๊ธฐํ™”ํ•˜๊ณ , build ๋ฉ”์„œ๋“œ์—์„œ๋Š” ๋ ˆ์ด์–ด์˜ ๊ฐ€์ค‘์น˜(weight)๋ฅผ ์ •์˜ํ•˜๊ณ , call ๋ฉ”์„œ๋“œ์—์„œ๋Š” ๋ ˆ์ด์–ด์˜ forward pass๋ฅผ ๊ตฌํ˜„ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿค“

Custom Layers๋ฅผ ๋งŒ๋“ค ๋•Œ๋Š” tf.keras.layers.Layer ํด๋ž˜์Šค๋ฅผ ์ƒ์†๋ฐ›์•„์•ผ ํ•œ๋‹ค๋Š” ์ ! ์žŠ์ง€ ๋งˆ์„ธ์š”. ๐Ÿ˜‰ ๊ทธ๋ฆฌ๊ณ  build ๋ฉ”์„œ๋“œ์—์„œ add_weight ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ€์ค‘์น˜๋ฅผ ์ •์˜ํ•ด์•ผ ํ…์„œํ”Œ๋กœ์šฐ๊ฐ€ ํ•ด๋‹น ๊ฐ€์ค‘์น˜๋ฅผ ํ•™์Šต ๋Œ€์ƒ์œผ๋กœ ์ธ์‹ํ•œ๋‹ค๋Š” ์ ๋„ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿค—

Custom Layers๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์„ ๋”์šฑ ์ฐฝ์˜์ ์œผ๋กœ ๋””์ž์ธํ•˜๊ณ , ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! โœจ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์ •๋ง ๋ฌด๊ถ๋ฌด์ง„ํ•˜์ฃ ? ๐Ÿ˜ฎ


Custom Training Loop: ๋‚ด ๋ง˜๋Œ€๋กœ ํ›ˆ๋ จ! ๐ŸŽ›๏ธโš™๏ธ

ํ…์„œํ”Œ๋กœ์šฐ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ model.fit() ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ค์ง€๋งŒ, ๋•Œ๋กœ๋Š” ํ›ˆ๋ จ ๊ณผ์ •์„ ๋” ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•˜๊ณ  ์‹ถ์„ ๋•Œ๊ฐ€ ์žˆ์–ด์š”. ๐Ÿค” ๊ทธ๋Ÿด ๋•Œ Custom Training Loop ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๋ฉด ํ›ˆ๋ จ ๊ณผ์ •์„ ์™„๋ฒฝํ•˜๊ฒŒ ๋‚ด ๋ง˜๋Œ€๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค! ๐Ÿ˜Ž

Custom Training Loop๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด gradient ๊ณ„์‚ฐ, optimizer ์ ์šฉ, metric ๊ณ„์‚ฐ ๋“ฑ ํ›ˆ๋ จ ๊ณผ์ •์˜ ๋ชจ๋“  ๋‹จ๊ณ„๋ฅผ ์ง์ ‘ ์ •์˜ํ•  ์ˆ˜ ์žˆ์–ด์š”. ์˜ˆ๋ฅผ ๋“ค์–ด, adversarial training์„ ๊ตฌํ˜„ํ•˜๊ฑฐ๋‚˜, custom learning rate schedule์„ ์ ์šฉํ•  ์ˆ˜ ์žˆ์ฃ . ๐Ÿ’ก

import tensorflow as tf

# ๋ชจ๋ธ ์ •์˜
model = tf.keras.Sequential([
  tf.keras.layers.Dense(10, activation='relu', input_shape=(784,)),
  tf.keras.layers.Dense(10, activation='softmax')
])

# Optimizer ์ •์˜
optimizer = tf.keras.optimizers.Adam(0.001)

# Loss function ์ •์˜
loss_fn = tf.keras.losses.CategoricalCrossentropy()

# Metric ์ •์˜
train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')

# ํ›ˆ๋ จ ๋ฃจํ”„ ์ •์˜
@tf.function
def train_step(images, labels):
  with tf.GradientTape() as tape:
    predictions = model(images)
    loss = loss_fn(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))
  train_accuracy.update_state(labels, predictions)

# ๋ฐ์ดํ„ฐ ๋กœ๋“œ
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') / 255.0
x_test = x_test.reshape(10000, 784).astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

# ํ›ˆ๋ จ ์‹คํ–‰
epochs = 5
batch_size = 32
for epoch in range(epochs):
  for batch in range(x_train.shape[0] // batch_size):
    images = x_train[batch * batch_size:(batch + 1) * batch_size]
    labels = y_train[batch * batch_size:(batch + 1) * batch_size]
    train_step(images, labels)
  print('Epoch:', epoch, 'Accuracy:', train_accuracy.result().numpy())
  train_accuracy.reset_states()

์œ„ ์ฝ”๋“œ๋Š” MNIST ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ค๋Š” Custom Training Loop ์˜ˆ์‹œ์˜ˆ์š”. train_step ํ•จ์ˆ˜์—์„œ gradient๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , optimizer๋ฅผ ์ ์šฉํ•˜๊ณ , metric์„ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๊ณผ์ •์„ ์ง์ ‘ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿง

Custom Training Loop๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์„ ๋”์šฑ ์ •๊ตํ•˜๊ฒŒ ํ›ˆ๋ จ์‹œํ‚ค๊ณ , ์—ฐ๊ตฌ์ ์ธ ์‹œ๋„๋ฅผ ์ž์œ ๋กญ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! ๐Ÿงช ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์ •๋ง ํŒŒ๊ณ ๋“ค์ˆ˜๋ก ๋†€๋ผ์šด ๊ธฐ๋Šฅ๋“ค์ด ๋งŽ์ฃ ? ๐Ÿ˜ฒ

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์‹ค์ œ ์‚ฌ๋ก€๋Š”? ๐Ÿค”

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์€ ์ •๋ง ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๊ณ  ์žˆ์–ด์š”. ๋ช‡ ๊ฐ€์ง€ ํฅ๋ฏธ๋กœ์šด ์‚ฌ๋ก€๋ฅผ ์†Œ๊ฐœํ•ด๋“œ๋ฆด๊ฒŒ์š”! ๐Ÿ˜Š

  • Google Translate: ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฒˆ์—ญ ํ’ˆ์งˆ์„ ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ! ๐ŸŒ
  • AlphaGo: ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ฐ„์„ ๋›ฐ์–ด๋„˜๋Š” ๋ฐ”๋‘‘ ์‹ค๋ ฅ์„ ๋ณด์—ฌ์คŒ! ๐Ÿฅฎ
  • Deepfake: ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹ค์ œ์™€ ๊ตฌ๋ณ„ํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฐ€์งœ ์˜์ƒ ์ œ์ž‘! ๐ŸŽญ (๋ฌผ๋ก  ์•…์šฉํ•˜๋ฉด ์•ˆ ๋˜๊ฒ ์ฃ ! ๐Ÿ™…โ€โ™€๏ธ)
  • ์ž์œจ์ฃผํ–‰ ์ž๋™์ฐจ: ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ๋ณ€ ํ™˜๊ฒฝ์„ ์ธ์‹ํ•˜๊ณ  ์•ˆ์ „ํ•˜๊ฒŒ ์ฃผํ–‰! ๐Ÿš—
  • ์˜๋ฃŒ ์ง„๋‹จ: ํ…์„œํ”Œ๋กœ์šฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์งˆ๋ณ‘์„ ์กฐ๊ธฐ์— ์ง„๋‹จํ•˜๊ณ  ์น˜๋ฃŒ! ๐Ÿฉบ

์ด ์™ธ์—๋„ ํ…์„œํ”Œ๋กœ์šฐ๋Š” ์ •๋ง ๋งŽ์€ ๋ถ„์•ผ์—์„œ ํ˜์‹ ์„ ์ด๋Œ๊ณ  ์žˆ๋‹ต๋‹ˆ๋‹ค. ๐Ÿš€ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์„ ์ตํ˜€๋‘๋ฉด ๋ฏธ๋ž˜ ์‹œ๋Œ€์— ์–ด๋–ค ๋ถ„์•ผ์—์„œ๋“  ํ™œ์•ฝํ•  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”! ๐Ÿ’ช


ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ๋” ๊นŠ์ด ์•Œ์•„๋ณผ๊นŒ์š”? ๐Ÿ“š

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์„ ๋” ๊นŠ์ด ๊ณต๋ถ€ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ž๋ฃŒ๋“ค์„ ์ฐธ๊ณ ํ•ด๋ณด์„ธ์š”! ๐Ÿ˜‰

  • TensorFlow ๊ณต์‹ ๋ฌธ์„œ: ํ…์„œํ”Œ๋กœ์šฐ์˜ ๋ชจ๋“  ๊ธฐ๋Šฅ์„ ์ž์„ธํ•˜๊ฒŒ ์„ค๋ช…! ๐Ÿ“– (https://www.tensorflow.org/)
  • TensorFlow Tutorials: ํ…์„œํ”Œ๋กœ์šฐ์˜ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์„ ์‹ค์Šตํ•ด๋ณผ ์ˆ˜ ์žˆ๋Š” ํŠœํ† ๋ฆฌ์–ผ ์ œ๊ณต! ๐Ÿ“ (https://www.tensorflow.org/tutorials)
  • TensorFlow Blog: ํ…์„œํ”Œ๋กœ์šฐ์˜ ์ตœ์‹  ์†Œ์‹๊ณผ ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ๋ฅผ ์ ‘ํ•  ์ˆ˜ ์žˆ์Œ! ๐Ÿ“ฐ (https://blog.tensorflow.org/)
  • TensorFlow Community: ํ…์„œํ”Œ๋กœ์šฐ ์‚ฌ์šฉ์ž๋“ค๊ณผ ํ•จ๊ป˜ ์งˆ๋ฌธํ•˜๊ณ  ๋‹ต๋ณ€ํ•˜๋ฉฐ ์ง€์‹์„ ๊ณต์œ ! ๐Ÿ—ฃ๏ธ (https://www.tensorflow.org/community)

์ปจํ…์ธ  ์—ฐ์žฅ: ์ถ”๊ฐ€ ์ฃผ์ œ ์‚ดํŽด๋ณด๊ธฐ ๐Ÿš€

ํ…์„œ๋ณด๋“œ ํ™œ์šฉ๋ฒ• ๐Ÿ“Š


ํ…์„œ๋ณด๋“œ๋Š” ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์˜ ํ•™์Šต ๊ณผ์ •์„ ์‹œ๊ฐ์ ์œผ๋กœ ๋ณด์—ฌ์ฃผ๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ์˜ˆ์š”. ๐Ÿ“ˆ Loss, accuracy ๋“ฑ์˜ metric ๋ณ€ํ™”๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ™•์ธํ•˜๊ณ , ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์–ด์š”. ํ…์„œ๋ณด๋“œ๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋ชจ๋ธ์˜ ๋ฌธ์ œ์ ์„ ๋น ๋ฅด๊ฒŒ ํŒŒ์•…ํ•˜๊ณ  ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค! ๐Ÿง

TPU ํ™œ์šฉ๋ฒ• โ˜๏ธ

TPU๋Š” ๊ตฌ๊ธ€์—์„œ ๋งŒ๋“  ํ…์„œํ”Œ๋กœ์šฐ ์ „์šฉ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ์˜ˆ์š”. GPU๋ณด๋‹ค ํ›จ์”ฌ ๋น ๋ฅธ ์†๋„๋กœ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ฃ . ๐Ÿš€ ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ๋•Œ TPU๋ฅผ ํ™œ์šฉํ•˜๋ฉด ํ›ˆ๋ จ ์‹œ๊ฐ„์„ ํš๊ธฐ์ ์œผ๋กœ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ์–ด์š”. โฑ๏ธ


tf.data API ์‚ฌ์šฉ๋ฒ• ๐Ÿ’พ

tf.data API๋Š” ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ๋„๊ตฌ์˜ˆ์š”. ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒ์ดํ”„๋ผ์ธ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ตœ์†Œํ™”ํ•˜๊ณ , ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์š”. ๐ŸŽ๏ธ

๋ถ„์‚ฐ ํ›ˆ๋ จ (Distributed Training) ๐ŸŒ

๋ถ„์‚ฐ ํ›ˆ๋ จ์€ ์—ฌ๋Ÿฌ ๋Œ€์˜ ์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๐Ÿš€ ๋‹จ์ผ ์ปดํ“จํ„ฐ๋กœ๋Š” ๊ฐ๋‹นํ•˜๊ธฐ ์–ด๋ ค์šด ๋Œ€๊ทœ๋ชจ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ฌ ๋•Œ ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์–ด์š”. ๐ŸŒ ๋ฐ์ดํ„ฐ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ, ๋ชจ๋ธ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์‚ฐ ํ›ˆ๋ จ ์ „๋žต์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค.

์–‘์žํ™” (Quantization) ๐Ÿ“‰

์–‘์žํ™”๋Š” ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ณ , ์ถ”๋ก  ์†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๋ชจ๋ธ์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋‚ฎ์€ ์ •๋ฐ€๋„๋กœ ํ‘œํ˜„ํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ณ , ์—ฐ์‚ฐ ์†๋„๋ฅผ ๋น ๋ฅด๊ฒŒ ๋งŒ๋“ค ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ’จ ํŠนํžˆ ๋ชจ๋ฐ”์ผ ๊ธฐ๊ธฐ๋‚˜ ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ์„ ์‹คํ–‰ํ•  ๋•Œ ์–‘์žํ™”๊ฐ€ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ๐Ÿ“ฑ

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ  ๊ธ€์„ ๋งˆ์น˜๋ฉฐโ€ฆ ๐Ÿ‘‹

์˜ค๋Š˜ ์šฐ๋ฆฌ๋Š” ํ…์„œํ”Œ๋กœ์šฐ 2.x์˜ ๊ณ ๊ธ‰ ๊ธฐ๋Šฅ์ธ Autograph, Custom Layers, Custom Training Loop์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ดค์–ด์š”. ์–ด๋– ์…จ๋‚˜์š”? ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ , ์ •๋ง ์•Œ๋ฉด ์•Œ์ˆ˜๋ก ํฅ๋ฏธ๋กญ๊ณ  ์œ ์šฉํ•˜์ง€ ์•Š๋‚˜์š”? ๐Ÿฅฐ

์ด ๊ธ€์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ํ…์„œํ”Œ๋กœ์šฐ ์—ฌ์ •์— ์กฐ๊ธˆ์ด๋‚˜๋งˆ ๋„์›€์ด ๋˜์—ˆ๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๐Ÿ™ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์€ ๋Š์ž„์—†์ด ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๊พธ์ค€ํžˆ ๊ณต๋ถ€ํ•˜๊ณ  ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์Šต๋“ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”. ๐Ÿ“š

ํฌ๊ธฐํ•˜์ง€ ์•Š๊ณ  ๊พธ์ค€ํžˆ ๋…ธ๋ ฅํ•˜๋ฉด ์—ฌ๋Ÿฌ๋ถ„๋„ ํ…์„œํ”Œ๋กœ์šฐ ์ „๋ฌธ๊ฐ€๊ฐ€ ๋  ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”! ๐Ÿ’ช ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ๊ณผ ํ•จ๊ป˜ ๋ฉ‹์ง„ ๋ฏธ๋ž˜๋ฅผ ๋งŒ๋“ค์–ด๋‚˜๊ฐ€์„ธ์š”! ๐ŸŒŸ ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ๋Œ“๊ธ€๋กœ ์งˆ๋ฌธํ•ด์ฃผ์„ธ์š”! ๐Ÿ˜‰ ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ ์„ ์‘์›ํ•ฉ๋‹ˆ๋‹ค! ๐Ÿ’–

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ  ๊ด€๋ จ ๋™์˜์ƒ

YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail

ํ…์„œํ”Œ๋กœ์šฐ ๊ธฐ์ˆ  ๊ด€๋ จ ์ƒํ’ˆ๊ฒ€์ƒ‰

์•Œ๋ฆฌ๊ฒ€์ƒ‰

Leave a Comment