โš ๏ธ์ด ์‚ฌ์ดํŠธ์˜ ์ผ๋ถ€ ๋งํฌ๋Š” Affiliate ํ™œ๋™์œผ๋กœ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.

๊ฐ•ํ™” ํ•™์Šต ๐Ÿš€ ๋‚˜๋„ AI ๋งˆ์Šคํ„ฐ?! Gym & TF Agents ์ •๋ณต!

๊ฐ•ํ™” ํ•™์Šต ๐Ÿš€ ๋‚˜๋„ AI ๋งˆ์Šคํ„ฐ?! Gym & TF Agents ์ •๋ณต!


์–ด๋•Œ์š”, ์š”์ฆ˜ ํ•ซํ•œ ๊ฐ•ํ™” ํ•™์Šต๐Ÿ”ฅ์— ๊ด€์‹ฌ ์žˆ์œผ์‹ ๊ฐ€์š”? ๋ญ”๊ฐ€ ๋ณต์žกํ•ด ๋ณด์ด์ง€๋งŒ, ๊ฑฑ์ • ๋งˆ์„ธ์š”! ๐Ÿ˜Ž ์ด ๊ธ€ ํ•˜๋‚˜๋ฉด ์—ฌ๋Ÿฌ๋ถ„๋„ ๊ฐ•ํ™” ํ•™์Šต ํ™˜๊ฒฝ ๊ตฌ์ถ• ์ „๋ฌธ๊ฐ€๊ฐ€ ๋  ์ˆ˜ ์žˆ์–ด์š”! ๋Šฆ๊ธฐ ์ „์— ์–ด์„œ ์‹œ์ž‘ํ•ด๋ด์š”! ๐Ÿ˜‰

์ด ๊ธ€์„ ์ฝ์œผ๋ฉด ๋ญ˜ ์•Œ ์ˆ˜ ์žˆ๋‚˜์š”?

  • OpenAI Gym์œผ๋กœ ์‰ฝ๊ณ  ์žฌ๋ฏธ์žˆ๊ฒŒ ๊ฐ•ํ™” ํ•™์Šต ํ™˜๊ฒฝ ์ฒดํ—˜ํ•˜๊ธฐ!
  • TensorFlow Agents๋กœ ๋‚˜๋งŒ์˜ ๊ฐ•ํ™” ํ•™์Šต ์—์ด์ „ํŠธ ๋งŒ๋“ค๊ธฐ!
  • ๊ฐ•ํ™” ํ•™์Šต, ๋” ๊นŠ์ด ํŒŒ๊ณ ๋“œ๋Š” ๋ฐฉ๋ฒ•๊นŒ์ง€ ๋งˆ์Šคํ„ฐํ•˜๊ธฐ!

Table of Contents

๊ฐ•ํ™” ํ•™์Šต, ์™œ ํ•ซํ• ๊นŒ? ๐Ÿค”

๊ฐ•ํ™” ํ•™์Šต์€ ์‰ฝ๊ฒŒ ๋งํ•ด ‘์Šค์Šค๋กœ ํ•™์Šตํ•˜๋Š” AI’๋ฅผ ๋งŒ๋“œ๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๐Ÿค– ๋งˆ์น˜ ๊ฐ•์•„์ง€ ํ›ˆ๋ จ์‹œํ‚ค๋“ฏ์ด, AI์—๊ฒŒ ์ž˜ํ–ˆ์„ ๋• ์นญ์ฐฌํ•ด์ฃผ๊ณ , ์ž˜๋ชปํ–ˆ์„ ๋• ๋ฒŒ์„ ์ฃผ๋ฉด์„œ ์Šค์Šค๋กœ ์ตœ์ ์˜ ํ–‰๋™์„ ์ฐพ์•„๊ฐ€๋„๋ก ํ•˜๋Š” ๊ฑฐ์ฃ . ๐Ÿถ ๋•๋ถ„์— ๊ฒŒ์ž„๐ŸŽฎ, ๋กœ๋ด‡๐Ÿค–, ์ž์œจ ์ฃผํ–‰๐Ÿš— ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ˜์‹ ์„ ์ผ์œผํ‚ค๊ณ  ์žˆ๋‹ต๋‹ˆ๋‹ค!


OpenAI Gym: ๊ฐ•ํ™” ํ•™์Šต ๋†€์ดํ„ฐ ๐ŸŽ 

OpenAI Gym์€ ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํ…Œ์ŠคํŠธํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ํ”Œ๋žซํผ์ด์—์š”. ๋ณต์žกํ•œ ์„ค์ • ์—†์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์„ค์น˜ํ•˜๊ณ  ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด์„œ, ๊ฐ•ํ™” ํ•™์Šต ์ž…๋ฌธ์ž์—๊ฒŒ๋Š” ์ตœ๊ณ ์˜ ๋†€์ดํ„ฐ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์ฃ ! ๐ŸŽ‰

OpenAI Gym ์„ค์น˜ & ์‚ฌ์šฉ๋ฒ•

  1. ์„ค์น˜: pip install gym ํ•œ ์ค„์ด๋ฉด ๋! ์ฐธ ์‰ฝ์ฃ ? ๐Ÿ˜œ
  2. ํ™˜๊ฒฝ ์„ ํƒ: Gym์—์„œ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•ด์š”. CartPole-v1, MountainCar-v0์ฒ˜๋Ÿผ ๊ฐ„๋‹จํ•œ ํ™˜๊ฒฝ๋ถ€ํ„ฐ, Atari ๊ฒŒ์ž„๐ŸŽฎ์ฒ˜๋Ÿผ ๋ณต์žกํ•œ ํ™˜๊ฒฝ๊นŒ์ง€! ์›ํ•˜๋Š” ํ™˜๊ฒฝ์„ ๊ณจ๋ผ๋ณด์„ธ์š”.
  3. ํ™˜๊ฒฝ ์‹คํ–‰: ์„ ํƒํ•œ ํ™˜๊ฒฝ์„ ๋ถˆ๋Ÿฌ์™€์„œ ์‹คํ–‰ํ•ด๋ณด์„ธ์š”.
import gym
env = gym.make('CartPole-v1') # CartPole ํ™˜๊ฒฝ ์„ ํƒ
observation = env.reset() # ํ™˜๊ฒฝ ์ดˆ๊ธฐํ™”

for _ in range(100):
    action = env.action_space.sample() # ๋žœ๋ค ์•ก์…˜ ์„ ํƒ
    observation, reward, done, info = env.step(action) # ์•ก์…˜ ์‹คํ–‰
    env.render() # ํ™”๋ฉด์— ๋ณด์—ฌ์ฃผ๊ธฐ
    if done:
        observation = env.reset()
env.close()

๊ฟ€ํŒ: env.action_space์™€ env.observation_space๋ฅผ ํ™œ์šฉํ•˜๋ฉด, ํ™˜๊ฒฝ์˜ ์•ก์…˜๊ณผ ์ƒํƒœ ์ •๋ณด๋ฅผ ์‰ฝ๊ฒŒ ํ™•์ธํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿง

TensorFlow Agents: ๋‚˜๋งŒ์˜ AI ์กฐ๋ จ์‚ฌ ๐Ÿง‘โ€๐Ÿซ

TensorFlow Agents๋Š” Google์—์„œ ๊ฐœ๋ฐœํ•œ ๊ฐ•ํ™” ํ•™์Šต ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์˜ˆ์š”. ๋‹ค์–‘ํ•œ ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‰ฝ๊ฒŒ ๊ตฌํ˜„ํ•˜๊ณ , ํ•™์Šต๋œ ์—์ด์ „ํŠธ๋ฅผ ๋ฐฐํฌํ•  ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ์ฃ . ๐Ÿ’ช TensorFlow Agents๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด, ์—ฌ๋Ÿฌ๋ถ„๋„ AI ์กฐ๋ จ์‚ฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค!

TensorFlow Agents ์„ค์น˜ & ์‚ฌ์šฉ๋ฒ•

  1. ์„ค์น˜: pip install tf-agents ๋ช…๋ น์–ด๋กœ ๊ฐ„๋‹จํ•˜๊ฒŒ ์„ค์น˜!
  2. ํ™˜๊ฒฝ ์„ค์ •: TensorFlow Agents๋Š” TensorFlow ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•ด์š”. TensorFlow๊ฐ€ ์„ค์น˜๋˜์–ด ์žˆ๋Š”์ง€ ํ™•์ธํ•ด์ฃผ์„ธ์š”.
  3. ์—์ด์ „ํŠธ ์ƒ์„ฑ: ์›ํ•˜๋Š” ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜(DQN, PPO ๋“ฑ)์„ ์„ ํƒํ•˜๊ณ , ์—์ด์ „ํŠธ๋ฅผ ์ƒ์„ฑํ•˜์„ธ์š”.
  4. ํ•™์Šต: ์—์ด์ „ํŠธ๋ฅผ ํ™˜๊ฒฝ๊ณผ ์ƒํ˜ธ์ž‘์šฉ์‹œํ‚ค๋ฉด์„œ ํ•™์Šต์‹œํ‚ค์„ธ์š”.
  5. ํ‰๊ฐ€: ํ•™์Šต๋œ ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ณ , ํ•„์š”์— ๋”ฐ๋ผ ๊ฐœ์„ ํ•˜์„ธ์š”.

์˜ˆ์‹œ ์ฝ”๋“œ (DQN ์—์ด์ „ํŠธ ํ•™์Šต)

import tensorflow as tf
from tf_agents.agents.dqn import dqn_agent
from tf_agents.environments import suite_gym, tf_py_environment
from tf_agents.networks import q_network
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common

# 1. ํ™˜๊ฒฝ ์„ค์ •
env_name = 'CartPole-v1'
train_py_env = suite_gym.load(env_name)
eval_py_env = suite_gym.load(env_name)
train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)

# 2. ๋„คํŠธ์›Œํฌ ์ƒ์„ฑ
q_net = q_network.QNetwork(
    train_env.observation_spec(),
    train_env.action_spec(),
    fc_layer_params=(100,))

# 3. ์—์ด์ „ํŠธ ์ƒ์„ฑ
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=1e-3)
train_step_counter = tf.Variable(0)
agent = dqn_agent.DqnAgent(
    train_env.time_step_spec(),
    train_env.action_spec(),
    q_network=q_net,
    optimizer=optimizer,
    td_errors_loss_fn=common.element_wise_squared_loss,
    train_step_counter=train_step_counter)
agent.initialize()

# 4. ๋ฆฌํ”Œ๋ ˆ์ด ๋ฒ„ํผ ์ƒ์„ฑ
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
    data_spec=agent.collect_data_spec,
    batch_size=train_env.batch_size,
    max_length=10000)

# 5. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘
def collect_step(environment, policy, buffer):
  time_step = environment.current_time_step()
  action_step = policy.action(time_step)
  next_time_step = environment.step(action_step.action)
  traj = trajectory.from_transition(time_step, action_step, next_time_step)
  buffer.add_batch(traj)

# 6. ํ•™์Šต
dataset = replay_buffer.as_dataset(
    num_parallel_calls=3,
    sample_batch_size=64,
    num_steps=2).prefetch(3)

iterator = iter(dataset)

for _ in range(1000):
  collect_step(train_env, agent.collect_policy, replay_buffer)
  experience, unused_info = next(iterator)
  train_loss = agent.train(experience).loss

# 7. ํ‰๊ฐ€ (์ƒ๋žต)

์ฃผ์˜์‚ฌํ•ญ: TensorFlow Agents๋Š” TensorFlow ๋ฒ„์ „์— ๋”ฐ๋ผ ํ˜ธํ™˜์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ˜ฅ ์„ค์น˜ํ•˜๊ธฐ ์ „์— TensorFlow ๋ฒ„์ „๊ณผ TensorFlow Agents ๋ฒ„์ „์„ ํ™•์ธํ•ด์ฃผ์„ธ์š”. ๋ฒ„์ „ ๊ด€๋ฆฌ๋Š” ํ•„์ˆ˜! โš ๏ธ


๊ฐ•ํ™” ํ•™์Šต ํ™˜๊ฒฝ, ๊ผผ๊ผผํ•˜๊ฒŒ ์„ ํƒํ•˜๊ธฐ ๐Ÿง

๊ฐ•ํ™” ํ•™์Šต ํ™˜๊ฒฝ์€ ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์ณ์š”. ๐Ÿง ๋”ฐ๋ผ์„œ ๋ชฉ์ ์— ๋งž๋Š” ํ™˜๊ฒฝ์„ ์‹ ์ค‘ํ•˜๊ฒŒ ์„ ํƒํ•ด์•ผ ํ•ด์š”.

ํ™˜๊ฒฝ ์ข…๋ฅ˜ํŠน์ง•์˜ˆ์‹œ
Classic Control๊ฐ„๋‹จํ•œ ๋ฌธ์ œ ํ•ด๊ฒฐ์— ์ ํ•ฉ.CartPole, MountainCar
Atari๋ณต์žกํ•œ ๊ฒŒ์ž„ ํ™˜๊ฒฝ์—์„œ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ…Œ์ŠคํŠธ ๊ฐ€๋Šฅ.Breakout, Pong
Robotics๋กœ๋ด‡ ์ œ์–ด, ๊ฒฝ๋กœ ๊ณ„ํš ๋“ฑ ๋ฌผ๋ฆฌ์ ์ธ ํ™˜๊ฒฝ์—์„œ ํ•™์Šต ๊ฐ€๋Šฅ.FetchReach, Pendulum
CustomํŠน์ • ๋ชฉ์ ์— ๋งž์ถฐ ์ง์ ‘ ํ™˜๊ฒฝ์„ ์„ค๊ณ„ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ.(์˜ˆ: ์ž์œจ ์ฃผํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์ฃผ์‹ ๊ฑฐ๋ž˜ ํ™˜๊ฒฝ)

๊ฟ€ํŒ: ์ฒ˜์Œ์—๋Š” ๊ฐ„๋‹จํ•œ ํ™˜๊ฒฝ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ, ์ ์ฐจ ๋ณต์žกํ•œ ํ™˜๊ฒฝ์œผ๋กœ ๋‚œ์ด๋„๋ฅผ ๋†’์—ฌ๊ฐ€๋Š” ๊ฒƒ์ด ์ข‹์•„์š”. ๐Ÿค“

Custom Environment: ๋‚˜๋งŒ์˜ ์‹คํ—˜์‹ค ๋งŒ๋“ค๊ธฐ ๐Ÿงช

OpenAI Gym์—์„œ ์ œ๊ณตํ•˜๋Š” ํ™˜๊ฒฝ ์™ธ์—, ๋‚˜๋งŒ์˜ Custom Environment๋ฅผ ๋งŒ๋“ค ์ˆ˜๋„ ์žˆ์–ด์š”. ํŠน์ • ์—ฐ๊ตฌ ๋ชฉ์ ์ด๋‚˜ ํ”„๋กœ์ ํŠธ์— ํ•„์š”ํ•œ ํ™˜๊ฒฝ์„ ์ง์ ‘ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์ฃ . โœจ

Custom Environment ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•

  1. gym.Env ํด๋ž˜์Šค๋ฅผ ์ƒ์†๋ฐ›์•„ ์ƒˆ๋กœ์šด ํด๋ž˜์Šค๋ฅผ ์ •์˜ํ•˜์„ธ์š”.
  2. __init__, step, reset, render, close ๋ฉ”์†Œ๋“œ๋ฅผ ๊ตฌํ˜„ํ•˜์„ธ์š”.
  3. observation_space์™€ action_space๋ฅผ ์ •์˜ํ•˜์„ธ์š”.

์˜ˆ์‹œ ์ฝ”๋“œ (๊ฐ„๋‹จํ•œ Grid World ํ™˜๊ฒฝ)

import gym
from gym import spaces
import numpy as np

class GridWorldEnv(gym.Env):
    metadata = {'render.modes': ['human']}

    def __init__(self, grid_size=4):
        super(GridWorldEnv, self).__init__()
        self.grid_size = grid_size
        self.observation_space = spaces.Discrete(grid_size * grid_size)
        self.action_space = spaces.Discrete(4) # 0: up, 1: right, 2: down, 3: left
        self.max_timesteps = 100

        self.reward_range = (0, 1)
        self.goal_position = grid_size * grid_size - 1 # ์šฐ์ธก ํ•˜๋‹จ
        self.current_position = 0 # ์ขŒ์ธก ์ƒ๋‹จ
        self.timestep = 0

    def reset(self):
        self.current_position = 0
        self.timestep = 0
        return self._get_obs()

    def _get_obs(self):
        return self.current_position

    def step(self, action):
        self.timestep += 1
        if action == 0: # up
            if self.current_position >= self.grid_size:
                self.current_position -= self.grid_size
        elif action == 1: # right
            if (self.current_position % self.grid_size) < (self.grid_size - 1):
                self.current_position += 1
        elif action == 2: # down
            if self.current_position < (self.grid_size * (self.grid_size - 1)):
                self.current_position += self.grid_size
        elif action == 3: # left
            if (self.current_position % self.grid_size) > 0:
                self.current_position -= 1

        done = self.current_position == self.goal_position or self.timestep >= self.max_timesteps
        reward = 1 if self.current_position == self.goal_position else 0
        info = {}

        return self._get_obs(), reward, done, info

    def render(self, mode='human'):
        grid = np.zeros((self.grid_size, self.grid_size))
        grid[self.current_position // self.grid_size][self.current_position % self.grid_size] = 1
        grid[self.goal_position // self.grid_size][self.goal_position % self.grid_size] = 2
        print(grid)

    def close(self):
        pass

# Example Usage
env = GridWorldEnv()
observation = env.reset()
for _ in range(10):
    action = env.action_space.sample()
    observation, reward, done, info = env.step(action)
    env.render()
    if done:
        observation = env.reset()
env.close()

๊ฟ€ํŒ: Custom Environment๋ฅผ ๋งŒ๋“ค ๋•Œ๋Š”, ํ™˜๊ฒฝ์˜ ์ƒํƒœ, ์•ก์…˜, ๋ณด์ƒ์„ ๋ช…ํ™•ํ•˜๊ฒŒ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”. โœ๏ธ


Distributed Training: ์Šˆํผ์ปดํ“จํ„ฐ ๋ถ€๋Ÿฝ์ง€ ์•Š๋‹ค! ๐Ÿ’ป

๊ฐ•ํ™” ํ•™์Šต์€ ํ•™์Šต์— ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋  ์ˆ˜ ์žˆ์–ด์š”. โฐ ์ด๋Ÿด ๋•Œ๋Š” Distributed Training์„ ํ™œ์šฉํ•˜๋ฉด, ์—ฌ๋Ÿฌ ๋Œ€์˜ ์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šต ์‹œ๊ฐ„์„ ๋‹จ์ถ•์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค! ๐Ÿš€

Distributed Training ๋ฐฉ๋ฒ•

  1. TensorFlow์˜ Distributed Training API๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”.
  2. ์—ฌ๋Ÿฌ ๋Œ€์˜ ์ปดํ“จํ„ฐ์— TensorFlow๋ฅผ ์„ค์น˜ํ•˜๊ณ , ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๊ตฌ์„ฑํ•˜์„ธ์š”.
  3. ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์‚ฐ์‹œํ‚ค๊ณ , ๊ฐ ์ปดํ“จํ„ฐ์—์„œ ๋…๋ฆฝ์ ์œผ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์„ธ์š”.
  4. ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ๋ชจ์•„์„œ, ์—์ด์ „ํŠธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค์„ธ์š”.

๊ฟ€ํŒ: TensorFlow Agents๋Š” Distributed Training์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ๋„๊ตฌ๋ฅผ ์ œ๊ณตํ•ด์š”. ๐Ÿ› ๏ธ TensorFlow Agents ๋ฌธ์„œ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ, Distributed Training ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•ด๋ณด์„ธ์š”.

๊ฐ•ํ™” ํ•™์Šต, ์–ด๋””์— ์จ๋จน์„๊นŒ? ๐Ÿค”

๊ฐ•ํ™” ํ•™์Šต์€ ์ •๋ง ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ๋˜๊ณ  ์žˆ์–ด์š”. ๋ช‡ ๊ฐ€์ง€ ์‚ฌ๋ก€๋ฅผ ์†Œ๊ฐœํ•ด๋“œ๋ฆด๊ฒŒ์š”!

  • ๊ฒŒ์ž„: AlphaGo, AlphaZero์ฒ˜๋Ÿผ, ๊ฐ•ํ™” ํ•™์Šต์œผ๋กœ ํ•™์Šต๋œ AI๋Š” ์ธ๊ฐ„์„ ๋›ฐ์–ด๋„˜๋Š” ์‹ค๋ ฅ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์–ด์š”. ๐Ÿ˜ฒ
  • ๋กœ๋ด‡: ๋กœ๋ด‡ ํŒ” ์ œ์–ด, ์ž์œจ ์ฃผํ–‰ ๋กœ๋ด‡ ๋“ฑ, ๊ฐ•ํ™” ํ•™์Šต์€ ๋กœ๋ด‡์˜ ์›€์ง์ž„์„ ๋”์šฑ ์ •๊ตํ•˜๊ฒŒ ๋งŒ๋“ค์–ด์ค˜์š”. ๐Ÿค–
  • ์ž์œจ ์ฃผํ–‰: ์ž์œจ ์ฃผํ–‰ ์ž๋™์ฐจ๋Š” ๊ฐ•ํ™” ํ•™์Šต์„ ํ†ตํ•ด ์Šค์Šค๋กœ ์šด์ „ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์šฐ๊ณ  ์žˆ์–ด์š”. ๐Ÿš—
  • ์ถ”์ฒœ ์‹œ์Šคํ…œ: YouTube, Netflix ๋“ฑ, ๊ฐ•ํ™” ํ•™์Šต์€ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ตœ์ ์˜ ์ฝ˜ํ…์ธ ๋ฅผ ์ถ”์ฒœํ•ด์ฃผ๋Š” ๋ฐ ํ™œ์šฉ๋˜๊ณ  ์žˆ์–ด์š”. ๐Ÿ“บ
  • ๊ธˆ์œต: ์ฃผ์‹ ๊ฑฐ๋ž˜, ํฌํŠธํด๋ฆฌ์˜ค ๊ด€๋ฆฌ ๋“ฑ, ๊ฐ•ํ™” ํ•™์Šต์€ ๊ธˆ์œต ๋ถ„์•ผ์—์„œ๋„ ํ˜์‹ ์„ ์ผ์œผํ‚ค๊ณ  ์žˆ์–ด์š”. ๐Ÿ“ˆ

๋” ๊นŠ์€ ๊ฐ•ํ•™์Šต ๊ธฐ์ˆ  ํƒ๊ตฌ๋ฅผ ์œ„ํ•œ ์ถ”๊ฐ€ ์ฃผ์ œ 5๊ฐ€์ง€ ๐Ÿ“š


๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํŒŒํ—ค์น˜๊ธฐ ๐Ÿ”

DQN, PPO, A2C… ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ข…๋ฅ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์•„์„œ ํ—ท๊ฐˆ๋ฆฌ์‹œ๋‚˜์š”? ๐Ÿค” ๊ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํŠน์ง•๊ณผ ์žฅ๋‹จ์ ์„ ๋น„๊ต ๋ถ„์„ํ•˜๊ณ , ๋‚˜์—๊ฒŒ ๋งž๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ ํƒํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ด์š”!


๋ณด์ƒ ํ•จ์ˆ˜ ์„ค๊ณ„์˜ ๋น„๋ฐ€ ๐Ÿ—๏ธ

๋ณด์ƒ ํ•จ์ˆ˜๋Š” ๊ฐ•ํ™” ํ•™์Šต์˜ ํ•ต์‹ฌ! ๐Ÿ”‘ ์–ด๋–ป๊ฒŒ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ์„ค๊ณ„ํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ์—์ด์ „ํŠธ์˜ ํ•™์Šต ๊ฒฐ๊ณผ๊ฐ€ ์™„์ „ํžˆ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์–ด์š”. ํšจ๊ณผ์ ์ธ ๋ณด์ƒ ํ•จ์ˆ˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›Œ๋ณด๊ณ , ๋‚˜๋งŒ์˜ ๋ณด์ƒ ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ค์–ด๋ด์š”!

๋ชจ๋ฐฉ ํ•™์Šต (Imitation Learning) ์™„์ „ ์ •๋ณต ๐Ÿ’ฏ

์ „๋ฌธ๊ฐ€์˜ ํ–‰๋™์„ ๋”ฐ๋ผ ํ•˜๋Š” ๋ชจ๋ฐฉ ํ•™์Šต! ํ‰๋‚ด ๋‚ด๊ธฐ๋งŒ ํ•˜๋Š” ๊ฒŒ ์•„๋‹ˆ๋ผ, ์Šค์Šค๋กœ ํ•™์Šต ๋Šฅ๋ ฅ์„ ํ‚ค์šธ ์ˆ˜๋„ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! ๐Ÿ˜ฎ ๋ชจ๋ฐฉ ํ•™์Šต์˜ ๊ธฐ๋ณธ ์›๋ฆฌ์™€ ๋‹ค์–‘ํ•œ ํ™œ์šฉ ์‚ฌ๋ก€๋ฅผ ์‚ดํŽด๋ณด๊ณ , ๋‚˜๋งŒ์˜ ๋ชจ๋ฐฉ ํ•™์Šต ๋ชจ๋ธ์„ ๋งŒ๋“ค์–ด๋ด์š”!

๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ๊ฐ•ํ™” ํ•™์Šต (Multi-Agent RL) ๋„์ „ โš”๏ธ

ํ˜ผ์ž์„œ๋Š” ์–ด๋ ต์ง€๋งŒ, ํ•จ๊ป˜๋ผ๋ฉด ๊ฐ€๋Šฅํ•˜๋‹ค! ์—ฌ๋Ÿฌ ์—์ด์ „ํŠธ๊ฐ€ ํ˜‘๋ ฅํ•˜๊ฑฐ๋‚˜ ๊ฒฝ์Ÿํ•˜๋ฉด์„œ ํ•™์Šตํ•˜๋Š” ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ๊ฐ•ํ™” ํ•™์Šต! ๐Ÿค ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๋”์šฑ ๊ฐ•๋ ฅํ•œ AI๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ๋ฐฐ์›Œ๋ด์š”!

๊ฐ•ํ™” ํ•™์Šต์˜ ์œค๋ฆฌ์  ๋ฌธ์ œ์™€ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ โš–๏ธ

AI๋„ ์œค๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค! ๊ฐ•ํ™” ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‚ฌํšŒ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ์œค๋ฆฌ์  ๋ฌธ์ œ์ ์„ ์‚ดํŽด๋ณด๊ณ , ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ๋ชจ์ƒ‰ํ•ด๋ด์š”. ๐Ÿง ์ฑ…์ž„๊ฐ ์žˆ๋Š” AI ๊ฐœ๋ฐœ์ž๊ฐ€ ๋˜๋Š” ๋ฐฉ๋ฒ•์„ ํ•จ๊ป˜ ๊ณ ๋ฏผํ•ด๋ด์š”!

๊ฐ•ํ™” ํ•™์Šต ๊ธฐ์ˆ  ๊ธ€์„ ๋งˆ์น˜๋ฉฐโ€ฆ โœ๏ธ

์ž, ์ด๋ ‡๊ฒŒ ํ•ด์„œ ๊ฐ•ํ™” ํ•™์Šต ํ™˜๊ฒฝ ๊ตฌ์ถ• ๋ฐฉ๋ฒ•์„ ํ•จ๊ป˜ ์•Œ์•„๋ดค์–ด์š”! ๐ŸŽ‰ OpenAI Gym๊ณผ TensorFlow Agents๋ฅผ ํ™œ์šฉํ•˜๋ฉด, ๋ˆ„๊ตฌ๋‚˜ ์‰ฝ๊ณ  ์žฌ๋ฏธ์žˆ๊ฒŒ ๊ฐ•ํ™” ํ•™์Šต์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค! ์žŠ์ง€ ๋งˆ์„ธ์š”! ๐Ÿ˜‰

๋ฌผ๋ก  ๊ฐ•ํ™” ํ•™์Šต์€ ์•„์ง ๋ฐœ์ „ํ•ด์•ผ ํ•  ๋ถ€๋ถ„์ด ๋งŽ์€ ๋ถ„์•ผ์˜ˆ์š”. ํ•˜์ง€๋งŒ ๊ทธ๋งŒํผ ๋ฌดํ•œํ•œ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ๋œป์ด๊ธฐ๋„ ํ•˜์ฃ . ์—ฌ๋Ÿฌ๋ถ„๋„ ๊ฐ•ํ™” ํ•™์Šต์— ๋Œ€ํ•œ ๊พธ์ค€ํ•œ ๊ด€์‹ฌ๊ณผ ๋…ธ๋ ฅ์œผ๋กœ, ๋ฏธ๋ž˜๋ฅผ ๋ฐ”๊ฟ€ ๋ฉ‹์ง„ AI๋ฅผ ๋งŒ๋“ค์–ด๋ณด์„ธ์š”! ๐ŸŒŸ

ํ˜น์‹œ ๋” ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ๋Œ“๊ธ€๋กœ ์งˆ๋ฌธํ•ด์ฃผ์„ธ์š”! ์ œ๊ฐ€ ์•„๋Š” ์„ ์—์„œ ์ตœ๋Œ€ํ•œ ์ž์„ธํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด๋“œ๋ฆด๊ฒŒ์š”. ๐Ÿ˜Š ๊ทธ๋Ÿผ ๋‹ค์Œ์— ๋˜ ์œ ์ตํ•œ ์ •๋ณด๋กœ ๋งŒ๋‚˜์š”! ๐Ÿ‘‹


๊ฐ•ํ™” ํ•™์Šต ๊ธฐ์ˆ  ๊ด€๋ จ ๋™์˜์ƒ

YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail

๊ฐ•ํ™” ํ•™์Šต ๊ธฐ์ˆ  ๊ด€๋ จ ์ƒํ’ˆ๊ฒ€์ƒ‰

์•Œ๋ฆฌ๊ฒ€์ƒ‰

Leave a Comment