โš ๏ธ์ด ์‚ฌ์ดํŠธ์˜ ์ผ๋ถ€ ๋งํฌ๋Š” Affiliate ํ™œ๋™์œผ๋กœ ์ˆ˜์ˆ˜๋ฃŒ๋ฅผ ์ œ๊ณต๋ฐ›์Šต๋‹ˆ๋‹ค.

TPU๋กœ ๐Ÿš€ ๋”ฅ๋Ÿฌ๋‹ ๋ฌด๋ฃŒ ํ•™์Šต! Colab ํ™œ์šฉ๋ฒ•

TPU๋กœ ๐Ÿš€ ๋”ฅ๋Ÿฌ๋‹ ๋ฌด๋ฃŒ ํ•™์Šต! Colab ํ™œ์šฉ๋ฒ•


์–ด๋จธ, ๐Ÿ˜ฒ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์‹œํ‚ค๋Š”๋ฐ GPU ๋ถ€์กฑํ•ด์„œ ๋ฐค์ƒˆ๋„๋ก ๊ธฐ๋‹ค๋ ค๋ณธ ์  ์žˆ์–ด? ๐Ÿ˜ด ์ด์ œ ๊ฑฑ์ • ๋—! Google Colab TPU๋งŒ ์žˆ์œผ๋ฉด ๋ˆ„๊ตฌ๋‚˜ ๋ฌด๋ฃŒ๋กœ โšก๏ธ ์ดˆ๊ณ ์† ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ์‚ฌ์‹ค! โœจ ๋†“์น˜๋ฉด ํ›„ํšŒํ•  ๊ฟ€ํŒ, ์ง€๊ธˆ ๋ฐ”๋กœ ํ™•์ธํ•ด๋ด์š”! ๐Ÿ˜‰

์˜ค๋Š˜ ์•Œ์•„๋ณผ ๊ฟ€ํŒ ๐Ÿฏ:

  • Google Colab์—์„œ TPU๋ฅผ ํ™œ์„ฑํ™”ํ•˜๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ• โš™๏ธ
  • TPU ์‚ฌ์šฉ ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์ตœ์ ํ™” ์ „๋žต ๐Ÿง 
  • ๋ฌด๋ฃŒ TPU ํ• ๋‹น๋Ÿ‰ ์ œํ•œ์„ ๊ทน๋ณตํ•˜๋Š” ํšจ์œจ์ ์ธ ํ™œ์šฉ ์ „๋žต ๐Ÿ“ˆ

Colab์—์„œ TPU ํ™œ์„ฑํ™”ํ•˜๊ธฐ ๐Ÿ”‘

Google Colab์€ ์›น ๋ธŒ๋ผ์šฐ์ €์—์„œ ๋ฐ”๋กœ ์ฝ”๋”ฉํ•˜๊ณ  ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์•„์ฃผ ํŽธ๋ฆฌํ•œ ํ™˜๊ฒฝ์ด์—์š”. ๊ฒŒ๋‹ค๊ฐ€ TPU(Tensor Processing Unit)๋ผ๋Š” ๊ตฌ๊ธ€์—์„œ ๋งŒ๋“  ๋”ฅ๋Ÿฌ๋‹ ๊ฐ€์†๊ธฐ๋ฅผ ๋ฌด๋ฃŒ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ต๋‹ˆ๋‹ค! ๐Ÿค— ์ž, ๊ทธ๋Ÿผ TPU ํ™œ์„ฑํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณผ๊นŒ์š”?

  1. Colab ๋…ธํŠธ๋ถ ์—ด๊ธฐ: ๋จผ์ € Google Drive์—์„œ ์ƒˆ Colab ๋…ธํŠธ๋ถ์„ ๋งŒ๋“ค๊ฑฐ๋‚˜ ๊ธฐ์กด ๋…ธํŠธ๋ถ์„ ์—ด์–ด์ฃผ์„ธ์š”.
  2. ๋Ÿฐํƒ€์ž„ ์œ ํ˜• ๋ณ€๊ฒฝ: ์ƒ๋‹จ ๋ฉ”๋‰ด์—์„œ ๋Ÿฐํƒ€์ž„ > ๋Ÿฐํƒ€์ž„ ์œ ํ˜• ๋ณ€๊ฒฝ์„ ํด๋ฆญ!
  3. ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ ์„ ํƒ: ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ ๋“œ๋กญ๋‹ค์šด ๋ฉ”๋‰ด์—์„œ TPU๋ฅผ ์„ ํƒํ•˜๊ณ  ์ €์žฅ ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅด๋ฉด ๋! ์ฐธ ์‰ฝ์ฃ ? ๐Ÿ˜‰

์ฝ”๋“œ ์˜ˆ์‹œ:

import tensorflow as tf

# TPU ๊ฐ์ง€
try:
  tpu = tf.distribute.cluster_resolver.TPUClusterResolver()  # TPU ๊ฐ์ง€
  print('TPU๋ฅผ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค: {}'.format(tpu.cluster_spec().as_string()))
except ValueError:
  tpu = None

# TPU ์ „๋žต ์„ค์ •
if tpu:
  tf.config.experimental_connect_to_cluster(tpu)
  tf.tpu.experimental.initialize_tpu_system(tpu)
  strategy = tf.distribute.TPUStrategy(tpu)
else:
  strategy = tf.distribute.get_strategy() # ๊ธฐ๋ณธ ์ „๋žต (GPU ๋˜๋Š” CPU)

print("์žฅ์น˜ ์ˆ˜: {}".format(strategy.num_replicas_in_sync))

์ด ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด์„œ "TPU๋ฅผ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค"๋ผ๋Š” ๋ฉ”์‹œ์ง€๊ฐ€ ๋‚˜์˜ค๋ฉด TPU๊ฐ€ ์ œ๋Œ€๋กœ ํ™œ์„ฑํ™”๋œ ๊ฑฐ์˜ˆ์š”! ๐ŸŽ‰ ๋งŒ์•ฝ GPU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด, ๋Ÿฐํƒ€์ž„ ์œ ํ˜• ๋ณ€๊ฒฝ์—์„œ GPU๋ฅผ ์„ ํƒํ•˜๋ฉด ๋œ๋‹ต๋‹ˆ๋‹ค. ๐Ÿ˜Š


TPU ์‚ฌ์šฉ ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๐Ÿง 

TPU๋Š” GPU์™€๋Š” ์กฐ๊ธˆ ๋‹ค๋ฅธ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์„œ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ์— ์‹ ๊ฒฝ ์จ์ค˜์•ผ ํ•ด์š”. ๐Ÿง ํŠนํžˆ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ๋Š” ๋”์šฑ ์ค‘์š”ํ•˜์ฃ ! ๋‹ค์Œ์€ TPU ์‚ฌ์šฉ ์‹œ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๊ฟ€ํŒ์ด์—์š”.

  • ๋ฐ์ดํ„ฐ ํƒ€์ž… ์ตœ์ ํ™”: 64๋น„ํŠธ(float64) ๋Œ€์‹  32๋น„ํŠธ(float32) ๋˜๋Š” 16๋น„ํŠธ(float16) ๋ฐ์ดํ„ฐ ํƒ€์ž…์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ผ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ’พ
  • ๋ฐฐ์น˜ ํฌ๊ธฐ ์กฐ์ ˆ: ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ๋„ˆ๋ฌด ํฌ๊ฒŒ ์žก์œผ๋ฉด ๋ฉ”๋ชจ๋ฆฌ ๋ถ€์กฑ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด์š”. ์ ์ ˆํ•œ ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ์ฐพ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”. ๐Ÿค”
  • ํ•„์š” ์—†๋Š” ๋ณ€์ˆ˜ ์‚ญ์ œ: ๋” ์ด์ƒ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๋ณ€์ˆ˜๋Š” del ๋ช…๋ น์–ด๋กœ ์‚ญ์ œํ•ด์„œ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ํ™•๋ณดํ•˜์„ธ์š”. ๐Ÿงน

์ฝ”๋“œ ์˜ˆ์‹œ:

import numpy as np

# 64๋น„ํŠธ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
data_64 = np.random.rand(1000, 1000).astype(np.float64)
print(f"64๋น„ํŠธ ๋ฐ์ดํ„ฐ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {data_64.nbytes / 1024**2:.2f} MB")

# 32๋น„ํŠธ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜
data_32 = data_64.astype(np.float32)
print(f"32๋น„ํŠธ ๋ฐ์ดํ„ฐ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {data_32.nbytes / 1024**2:.2f} MB")

# 16๋น„ํŠธ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€ํ™˜
data_16 = data_64.astype(np.float16)
print(f"16๋น„ํŠธ ๋ฐ์ดํ„ฐ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰: {data_16.nbytes / 1024**2:.2f} MB")

# ํ•„์š” ์—†๋Š” ๋ณ€์ˆ˜ ์‚ญ์ œ
del data_64

๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์ตœ์ ํ™” ๐Ÿš€

TPU๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ฐ์ดํ„ฐ๋ฅผ ๋กœ๋”ฉํ•˜๋Š” ์†๋„๊ฐ€ ๋А๋ฆฌ๋ฉด ์ „์ฒด ํ•™์Šต ์†๋„๊ฐ€ ๋А๋ ค์งˆ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿข ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์†๋„๋ฅผ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์•„์š”.

  • TFRecord ํ˜•์‹ ์‚ฌ์šฉ: TFRecord๋Š” TensorFlow์—์„œ ์ œ๊ณตํ•˜๋Š” ๋ฐ์ดํ„ฐ ์ €์žฅ ํ˜•์‹์œผ๋กœ, ๋ฐ์ดํ„ฐ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฝ๊ณ  ์“ธ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ค˜์š”. ๐Ÿ“š
  • tf.data API ํ™œ์šฉ: tf.data API๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฐ์ดํ„ฐ ํŒŒ์ดํ”„๋ผ์ธ์„ ๊ตฌ์ถ•ํ•ด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณ‘๋ ฌ๋กœ ๋กœ๋”ฉํ•˜๊ณ  ์ „์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์–ด์š”. โš™๏ธ
  • ์บ์‹ฑ ํ™œ์šฉ: ์ž์ฃผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ์ดํ„ฐ๋Š” ์บ์‹ฑํ•ด์„œ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•  ์ˆ˜ ์žˆ์–ด์š”. โฑ๏ธ

์ฝ”๋“œ ์˜ˆ์‹œ:

import tensorflow as tf

# TFRecord ํŒŒ์ผ ์ƒ์„ฑ ์˜ˆ์‹œ (๊ฐ€์ •)
def create_tfrecord(data, filename):
    with tf.io.TFRecordWriter(filename) as writer:
        for example in data:
            feature = {
                'data': tf.train.Feature(float_list=tf.train.FloatList(value=example.flatten()))
            }
            example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
            writer.write(example_proto.SerializeToString())

# tf.data API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ
def load_dataset(filenames):
    def _parse_function(example_proto):
        feature_description = {
            'data': tf.io.FixedLenFeature((), tf.float32, default_value=tf.zeros((100,)))  # ์˜ˆ์‹œ ํฌ๊ธฐ
        }
        return tf.io.parse_single_example(example_proto, feature_description)

    dataset = tf.data.TFRecordDataset(filenames)
    dataset = dataset.map(_parse_function)
    return dataset

# ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋”ฉ ๋ฐ ๋ฐฐ์น˜ ์ฒ˜๋ฆฌ
filenames = ['data.tfrecord']  # ์‹ค์ œ ํŒŒ์ผ ์ด๋ฆ„์œผ๋กœ ๋ณ€๊ฒฝ
dataset = load_dataset(filenames)
dataset = dataset.batch(32)  # ๋ฐฐ์น˜ ํฌ๊ธฐ ์„ค์ •
dataset = dataset.prefetch(tf.data.AUTOTUNE)  # ํ”„๋ฆฌํŽ˜์น˜๋กœ ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ๊ฐ€์†ํ™”

Colab ํ™˜๊ฒฝ ๋ฌธ์ œ ํ•ด๊ฒฐ ๐Ÿ› ๏ธ

Colab์„ ์‚ฌ์šฉํ•˜๋‹ค ๋ณด๋ฉด ๊ฐ€๋” ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๋ฌธ์ œ๋“ค์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ˜ซ ํ”ํ•œ ๋ฌธ์ œ๋“ค๊ณผ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋‘๋ฉด ๋‹นํ™ฉํ•˜์ง€ ์•Š๊ณ  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๊ฒ ์ฃ ? ๐Ÿ˜‰

  • ๋Ÿฐํƒ€์ž„ ๋Š๊น€: Colab์€ ์ผ์ • ์‹œ๊ฐ„ ๋™์•ˆ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด ๋Ÿฐํƒ€์ž„์ด ์ž๋™์œผ๋กœ ๋Š๊ฒจ์š”. ๐Ÿ˜ญ ์ฝ”๋“œ๋ฅผ ์ฃผ๊ธฐ์ ์œผ๋กœ ์‹คํ–‰ํ•˜๊ฑฐ๋‚˜ Colab Pro๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋Ÿฐํƒ€์ž„ ๋Š๊น€์„ ๋ฐฉ์ง€ํ•  ์ˆ˜ ์žˆ์–ด์š”.
  • ๋ฉ”๋ชจ๋ฆฌ ๋ถ€์กฑ ์˜ค๋ฅ˜: ์œ„์—์„œ ์„ค๋ช…ํ•œ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•ด๋„ ๋ฉ”๋ชจ๋ฆฌ ๋ถ€์กฑ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์–ด์š”. ์ด๋Ÿด ๋•Œ๋Š” ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ฑฐ๋‚˜ ๋” ์ž‘์€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ๊ณ ๋ คํ•ด ๋ณด์„ธ์š”. ๐Ÿ˜ฅ
  • TPU ํ• ๋‹น ์˜ค๋ฅ˜: TPU ํ• ๋‹น๋Ÿ‰์ด ๋ถ€์กฑํ•˜๋ฉด TPU๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†์–ด์š”. ๐Ÿ˜ข ์ด๋Ÿด ๋•Œ๋Š” Colab Pro ๋˜๋Š” Colab Pro+๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๋‚˜์ค‘์— ๋‹ค์‹œ ์‹œ๋„ํ•ด ๋ณด์„ธ์š”.

๋ฌธ์ œ ํ•ด๊ฒฐ ๊ฟ€ํŒ:

  • ๊ตฌ๊ธ€๋ง: Colab ์˜ค๋ฅ˜ ๋ฉ”์‹œ์ง€๋ฅผ ๊ตฌ๊ธ€์— ๊ฒ€์ƒ‰ํ•˜๋ฉด ๋งŽ์€ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์ฐพ์„ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿ”
  • Colab ์ปค๋ฎค๋‹ˆํ‹ฐ: Colab ์ปค๋ฎค๋‹ˆํ‹ฐ์— ์งˆ๋ฌธํ•˜๋ฉด ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค์˜ ๋„์›€์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿค—
  • Colab ๊ณ ๊ฐ์„ผํ„ฐ: Colab ๊ณ ๊ฐ์„ผํ„ฐ์— ๋ฌธ์˜ํ•˜๋ฉด ์ „๋ฌธ๊ฐ€์˜ ๋„์›€์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿง‘โ€๐Ÿ’ป

๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต ํŠœํ† ๋ฆฌ์–ผ (์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜) ๐Ÿ–ผ๏ธ

์ž, ์ด์ œ TPU๋ฅผ ์ด์šฉํ•ด์„œ ๊ฐ„๋‹จํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผœ ๋ณผ๊นŒ์š”? ๐Ÿค— ์—ฌ๊ธฐ์„œ๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”.

  1. ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„: TensorFlow Datasets์—์„œ ์ œ๊ณตํ•˜๋Š” CIFAR-10 ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. CIFAR-10์€ 10๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๋ถ„๋ฅ˜๋œ 60,000๊ฐœ์˜ ์ž‘์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹์ด์—์š”. ๐Ÿถ๐Ÿฑ
  2. ๋ชจ๋ธ ์ •์˜: ๊ฐ„๋‹จํ•œ CNN(Convolutional Neural Network) ๋ชจ๋ธ์„ ์ •์˜ํ•  ๊ฑฐ์˜ˆ์š”. ์ธต์„ ๋” ์Œ“๊ณ , ๋“œ๋กญ์•„์›ƒ์„ ์ถ”๊ฐ€ํ•˜๊ณ , ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿค“
  3. ๋ชจ๋ธ ์ปดํŒŒ์ผ: ์†์‹ค ํ•จ์ˆ˜, ์˜ตํ‹ฐ๋งˆ์ด์ €, ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์„ค์ •ํ•ด์„œ ๋ชจ๋ธ์„ ์ปดํŒŒ์ผํ•  ๊ฑฐ์˜ˆ์š”. ๐Ÿ“‰
  4. ๋ชจ๋ธ ํ•™์Šต: model.fit ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ๊ฑฐ์˜ˆ์š”. epochs๋ฅผ ๋Š˜๋ฆฌ๊ฑฐ๋‚˜ ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ๋ณ€๊ฒฝํ•ด์„œ ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿš€

์ฝ”๋“œ ์˜ˆ์‹œ:

import tensorflow as tf
import tensorflow_datasets as tfds

# ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋”ฉ
(ds_train, ds_test), ds_info = tfds.load(
    'cifar10',
    split=['train', 'test'],
    shuffle_files=True,
    as_supervised=True,
    with_info=True,
)

# ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜
def normalize_img(image, label):
  """Normalizes images: `uint8` -> `float32`."""
  return tf.cast(image, tf.float32) / 255., label

# ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ
ds_train = ds_train.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)

ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.cache()
ds_test = ds_test.batch(128)
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)

# ๋ชจ๋ธ ์ •์˜
def create_model():
  return tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
      tf.keras.layers.MaxPooling2D((2, 2)),
      tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
      tf.keras.layers.MaxPooling2D((2, 2)),
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dense(10, activation='softmax')
  ])

# TPU ์ „๋žต ์‚ฌ์šฉ
with strategy.scope():
  model = create_model()
  model.compile(
      optimizer='adam',
      loss='sparse_categorical_crossentropy',
      metrics=['accuracy']
  )

# ๋ชจ๋ธ ํ•™์Šต
model.fit(
    ds_train,
    epochs=10,
    validation_data=ds_test
)

๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต ํŠœํ† ๋ฆฌ์–ผ (ํ…์ŠคํŠธ ์ƒ์„ฑ) โœ๏ธ

์ด๋ฒˆ์—๋Š” TPU๋ฅผ ์ด์šฉํ•ด์„œ ํ…์ŠคํŠธ ์ƒ์„ฑ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผœ ๋ณผ๊นŒ์š”? ๐Ÿ“ ์—ฌ๊ธฐ์„œ๋Š” ๊ฐ„๋‹จํ•œ LSTM(Long Short-Term Memory) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ ํ…์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณผ ๊ฑฐ์˜ˆ์š”.

  1. ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„: TensorFlow Datasets์—์„œ ์ œ๊ณตํ•˜๋Š” Shakespeare ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•  ๊ฑฐ์˜ˆ์š”. Shakespeare ๋ฐ์ดํ„ฐ์…‹์€ ์…ฐ์ต์Šคํ”ผ์–ด์˜ ์ž‘ํ’ˆ์„ ๋ชจ์•„๋†“์€ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ์…‹์ด์—์š”. ๐ŸŽญ
  2. ํ…์ŠคํŠธ ์ „์ฒ˜๋ฆฌ: ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆซ์ž๋กœ ๋ณ€ํ™˜ํ•˜๊ณ , ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•  ๊ฑฐ์˜ˆ์š”. ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋ธ์ด ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋„๋ก ์ „์ฒ˜๋ฆฌํ•˜๋Š” ๊ณผ์ •์ด ์ค‘์š”ํ•ด์š”. ๐Ÿค“
  3. ๋ชจ๋ธ ์ •์˜: LSTM ๋ ˆ์ด์–ด๋ฅผ ์‚ฌ์šฉํ•ด์„œ ํ…์ŠคํŠธ ์ƒ์„ฑ ๋ชจ๋ธ์„ ์ •์˜ํ•  ๊ฑฐ์˜ˆ์š”. LSTM ๋ ˆ์ด์–ด๋Š” ์‹œํ€€์Šค ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐ ํšจ๊ณผ์ ์ธ ๋ ˆ์ด์–ด์—์š”. ๐Ÿง 
  4. ๋ชจ๋ธ ์ปดํŒŒ์ผ: ์†์‹ค ํ•จ์ˆ˜, ์˜ตํ‹ฐ๋งˆ์ด์ €, ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์„ค์ •ํ•ด์„œ ๋ชจ๋ธ์„ ์ปดํŒŒ์ผํ•  ๊ฑฐ์˜ˆ์š”. ๐Ÿ“‰
  5. ๋ชจ๋ธ ํ•™์Šต: model.fit ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ๊ฑฐ์˜ˆ์š”. epochs๋ฅผ ๋Š˜๋ฆฌ๊ฑฐ๋‚˜ ๋ฐฐ์น˜ ํฌ๊ธฐ๋ฅผ ๋ณ€๊ฒฝํ•ด์„œ ํ•™์Šต ๊ฒฐ๊ณผ๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿš€
  6. ํ…์ŠคํŠธ ์ƒ์„ฑ: ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•ด์„œ ์ƒˆ๋กœ์šด ํ…์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•  ๊ฑฐ์˜ˆ์š”. ๋ชจ๋ธ์ด ์ƒ์„ฑํ•œ ํ…์ŠคํŠธ๊ฐ€ ์–ผ๋งˆ๋‚˜ ์ž์—ฐ์Šค๋Ÿฌ์šด์ง€ ํ™•์ธํ•ด ๋ณด์„ธ์š”. ๐Ÿค–

์ฝ”๋“œ ์˜ˆ์‹œ:

import tensorflow as tf
import numpy as np

# ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ ๋กœ๋“œ (์˜ˆ์‹œ)
text = "์ด๊ฒƒ์€ ์˜ˆ์‹œ ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ์ž…๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค."

# ๋ฌธ์ž ์ง‘ํ•ฉ ์ƒ์„ฑ
characters = sorted(list(set(text)))
char_to_index = {char: index for index, char in enumerate(characters)}
index_to_char = {index: char for index, char in enumerate(characters)}

# ์‹œํ€€์Šค ์ƒ์„ฑ
seq_length = 10
sequences = []
next_chars = []
for i in range(0, len(text) - seq_length):
    sequences.append(text[i: i + seq_length])
    next_chars.append(text[i + seq_length])

# ๋ฐ์ดํ„ฐ ๋ฒกํ„ฐํ™”
x = np.zeros((len(sequences), seq_length, len(characters)), dtype=bool)
y = np.zeros((len(sequences), len(characters)), dtype=bool)
for i, sequence in enumerate(sequences):
    for t, char in enumerate(sequence):
        x[i, t, char_to_index[char]] = 1
    y[i, char_to_index[next_chars[i]]] = 1

# LSTM ๋ชจ๋ธ ์ •์˜
model = tf.keras.models.Sequential([
    tf.keras.layers.LSTM(128, input_shape=(seq_length, len(characters))),
    tf.keras.layers.Dense(len(characters), activation='softmax')
])

# ๋ชจ๋ธ ์ปดํŒŒ์ผ
model.compile(loss='categorical_crossentropy', optimizer='adam')

# ๋ชจ๋ธ ํ•™์Šต
model.fit(x, y, batch_size=32, epochs=10)

# ํ…์ŠคํŠธ ์ƒ์„ฑ ํ•จ์ˆ˜
def generate_text(model, start_string, num_generate=50):
    input_eval = [char_to_index[s] for s in start_string]
    input_eval = tf.expand_dims(input_eval, 0)
    text_generated = []

    for i in range(num_generate):
        predictions = model(input_eval)
        predictions = tf.squeeze(predictions, 0)
        predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()
        text_generated.append(index_to_char[predicted_id])
        input_eval = tf.expand_dims([predicted_id], 0)

    return start_string + ''.join(text_generated)

# ํ…์ŠคํŠธ ์ƒ์„ฑ
start_string = "์ด๊ฒƒ์€"
print(generate_text(model, start_string))

๋ฌด๋ฃŒ TPU ํ• ๋‹น๋Ÿ‰ ์ œํ•œ ๋ฐ ํšจ์œจ์ ์ธ ํ™œ์šฉ ์ „๋žต โš–๏ธ

Google Colab์€ TPU๋ฅผ ๋ฌด๋ฃŒ๋กœ ์ œ๊ณตํ•˜์ง€๋งŒ, ํ• ๋‹น๋Ÿ‰ ์ œํ•œ์ด ์žˆ๋‹ค๋Š” ์ ์„ ์žŠ์ง€ ๋งˆ์„ธ์š”! ๐Ÿ˜ข TPU๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ์ „๋žต์„ ์•Œ์•„๋‘๋ฉด ํ• ๋‹น๋Ÿ‰ ์ œํ•œ์„ ๊ทน๋ณตํ•˜๊ณ  ๋” ๋งŽ์€ ํ•™์Šต์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์š”.

  • ํ•„์š”ํ•  ๋•Œ๋งŒ TPU ์‚ฌ์šฉ: TPU๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์€ ์ฝ”๋“œ๋Š” CPU๋‚˜ GPU๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , TPU๊ฐ€ ํ•„์š”ํ•œ ์ฝ”๋“œ๋งŒ TPU๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ข‹์•„์š”. ๐Ÿ’ก
  • ํ•™์Šต ์ฝ”๋“œ ์ตœ์ ํ™”: ๋ถˆํ•„์š”ํ•œ ์—ฐ์‚ฐ์„ ์ค„์ด๊ณ , ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ตœ์†Œํ™”ํ•ด์„œ ํ•™์Šต ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•˜๋ฉด TPU ํ• ๋‹น๋Ÿ‰์„ ๋” ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด์š”. โฑ๏ธ
  • Colab Pro ๋˜๋Š” Colab Pro+ ์‚ฌ์šฉ: Colab Pro ๋˜๋Š” Colab Pro+๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋” ๋งŽ์€ TPU ํ• ๋‹น๋Ÿ‰์„ ๋ฐ›์„ ์ˆ˜ ์žˆ๊ณ , ๋Ÿฐํƒ€์ž„ ์‹œ๊ฐ„ ์ œํ•œ๋„ ๋Š˜์–ด๋‚œ๋‹ต๋‹ˆ๋‹ค. ๐Ÿ’ฐ

TPU ํ• ๋‹น๋Ÿ‰ ํ™•์ธ ๋ฐฉ๋ฒ•:

Colab ๋…ธํŠธ๋ถ์—์„œ ๋‹ค์Œ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•˜๋ฉด ํ˜„์žฌ TPU ํ• ๋‹น๋Ÿ‰์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์–ด์š”.

!cat /proc/uptime | awk '{print ($1/60/60)" hours"}'

Colab Pro, Colab Pro+๋กœ TPU ์‚ฌ์šฉ๋Ÿ‰ ๋Š˜๋ฆฌ๊ธฐ โž•


๋ฌด๋ฃŒ Colab TPU ํ• ๋‹น๋Ÿ‰์ด ๋ถ€์กฑํ•˜๋‹ค๋ฉด Colab Pro ๋˜๋Š” Colab Pro+๋ฅผ ๊ณ ๋ คํ•ด ๋ณด์„ธ์š”. ๐Ÿคฉ Colab Pro์™€ Colab Pro+๋Š” ๋” ๋งŽ์€ TPU ํ• ๋‹น๋Ÿ‰, ๋” ๊ธด ๋Ÿฐํƒ€์ž„ ์‹œ๊ฐ„, ๋” ๋น ๋ฅธ GPU ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜œํƒ์„ ์ œ๊ณตํ•ด์š”.

๊ธฐ๋ŠฅColab (๋ฌด๋ฃŒ)Colab ProColab Pro+
TPU ํ• ๋‹น๋Ÿ‰์ œํ•œ์ ์ฆ๊ฐ€ํ›จ์”ฌ ์ฆ๊ฐ€
๋Ÿฐํƒ€์ž„ ์‹œ๊ฐ„ ์ œํ•œ์ œํ•œ์ ์ฆ๊ฐ€ํ›จ์”ฌ ์ฆ๊ฐ€
GPU ์„ฑ๋Šฅ์ œํ•œ์ ์ฆ๊ฐ€ํ›จ์”ฌ ์ฆ๊ฐ€
๋ฐฑ๊ทธ๋ผ์šด๋“œ ์‹คํ–‰๋ถˆ๊ฐ€๋Šฅ๊ฐ€๋Šฅ๊ฐ€๋Šฅ
๊ฐ€๊ฒฉ๋ฌด๋ฃŒ์œ ๋ฃŒ๋” ๋น„์Œˆ

Colab Pro์™€ Colab Pro+๋Š” ๋”ฅ๋Ÿฌ๋‹ ์—ฐ๊ตฌ์ž, ํ•™์ƒ, ๊ฐœ๋ฐœ์ž์—๊ฒŒ ์•„์ฃผ ์œ ์šฉํ•œ ๋„๊ตฌ๋ž๋‹ˆ๋‹ค. ๐Ÿ‘

๋‹ค๋ฅธ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ (AWS, Azure)์—์„œ์˜ TPU ํ™œ์šฉ ๋น„๊ต โ˜๏ธ

Google Colab ์™ธ์—๋„ AWS, Azure ๊ฐ™์€ ๋‹ค๋ฅธ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ๋„ TPU๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด์š”. โ˜๏ธ ๊ฐ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์€ TPU ์‚ฌ์šฉ ๋ฐฉ์‹, ๊ฐ€๊ฒฉ, ์ œ๊ณตํ•˜๋Š” ์„œ๋น„์Šค ๋“ฑ์ด ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์— ์ž์‹ ์—๊ฒŒ ๋งž๋Š” ํ™˜๊ฒฝ์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”.

ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝTPU ์‚ฌ์šฉ ๋ฐฉ์‹๊ฐ€๊ฒฉ์žฅ์ ๋‹จ์ 
Google Colab์›น ๋ธŒ๋ผ์šฐ์ € ๊ธฐ๋ฐ˜, ๋ฌด๋ฃŒ TPU ์ œ๊ณต๋ฌด๋ฃŒ (Colab Pro, Colab Pro+๋Š” ์œ ๋ฃŒ)๊ฐ„ํŽธํ•œ ์‚ฌ์šฉ, ๋ฌด๋ฃŒ TPU ์ œ๊ณตํ• ๋‹น๋Ÿ‰ ์ œํ•œ, ๋Ÿฐํƒ€์ž„ ์ œํ•œ
AWSEC2 ์ธ์Šคํ„ด์Šค์— TPU ์„ค์น˜ ๋˜๋Š” AWS Deep Learning AMI ์‚ฌ์šฉ์‹œ๊ฐ„๋‹น ๊ณผ๊ธˆ๋‹ค์–‘ํ•œ ์ธ์Šคํ„ด์Šค ์œ ํ˜•, ์œ ์—ฐํ•œ ๊ตฌ์„ฑ๋ณต์žกํ•œ ์„ค์ •, ๋†’์€ ๋น„์šฉ
AzureAzure VM์— TPU ์„ค์น˜ ๋˜๋Š” Azure Machine Learning ์‚ฌ์šฉ์‹œ๊ฐ„๋‹น ๊ณผ๊ธˆ๋‹ค์–‘ํ•œ VM ์œ ํ˜•, ํ†ตํ•ฉ๋œ ๋จธ์‹ ๋Ÿฌ๋‹ ํ™˜๊ฒฝ๋ณต์žกํ•œ ์„ค์ •, ๋†’์€ ๋น„์šฉ

๊ฐ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์˜ ์žฅ๋‹จ์ ์„ ๋น„๊ตํ•ด๋ณด๊ณ , ์ž์‹ ์˜ ์˜ˆ์‚ฐ๊ณผ ํ•„์š”์— ๋งž๋Š” ํ™˜๊ฒฝ์„ ์„ ํƒํ•˜์„ธ์š”! ๐Ÿ˜‰


ํ™•์žฅ ํ•™์Šต ๋ฐฉํ–ฅ: TPU๋ฅผ ๋„˜์–ด์„œ ๐Ÿš€

TPU๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์„ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋ฐ ์•„์ฃผ ์œ ์šฉํ•œ ๋„๊ตฌ์ด์ง€๋งŒ, TPU๋งŒ์œผ๋กœ๋Š” ๋ชจ๋“  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์—†์–ด์š”. ๐Ÿ˜… ๋‹ค์Œ์€ TPU๋ฅผ ๋„˜์–ด์„œ ๋” ๋‚˜์€ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•œ ํ™•์žฅ ํ•™์Šต ๋ฐฉํ–ฅ์ด์—์š”.

  • ๋ชจ๋ธ ๋ณ‘๋ ฌํ™”: ๋ชจ๋ธ ํฌ๊ธฐ๊ฐ€ ๋„ˆ๋ฌด ์ปค์„œ ํ•˜๋‚˜์˜ TPU์— ์˜ฌ๋ฆด ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ, ๋ชจ๋ธ์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ TPU์— ๋ถ„์‚ฐ์‹œ์ผœ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด์—์š”. ์ชผ๊ฐœ๊ณ  ํ•ฉ์น˜๋Š” ๊ธฐ์ˆ ! ๐Ÿงฉ
  • ๋ฐ์ดํ„ฐ ๋ณ‘๋ ฌํ™”: ๋ฐ์ดํ„ฐ์…‹ ํฌ๊ธฐ๊ฐ€ ๋„ˆ๋ฌด ์ปค์„œ ํ•˜๋‚˜์˜ TPU์— ์˜ฌ๋ฆด ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ์…‹์„ ์—ฌ๋Ÿฌ ๊ฐœ์˜ TPU์— ๋ถ„์‚ฐ์‹œ์ผœ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด์—์š”. ๋‚˜๋ˆ ์„œ ์ •๋ณต! โš”๏ธ
  • AutoML: AutoML์€ ์ž๋™์œผ๋กœ ์ตœ์ ์˜ ๋ชจ๋ธ ๊ตฌ์กฐ์™€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ฐพ์•„์ฃผ๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๋ชจ๋ธ ์„ค๊ณ„ ์‹œ๊ฐ„์„ ์ ˆ์•ฝํ•˜๊ณ  ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿค–
  • Federated Learning: Federated Learning์€ ์ค‘์•™ ์„œ๋ฒ„์— ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์œผ์ง€ ์•Š๊ณ  ๊ฐ ๊ธฐ๊ธฐ์—์„œ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด์—์š”. ๊ฐœ์ธ ์ •๋ณด ๋ณดํ˜ธ์— ์œ ๋ฆฌํ•˜๊ณ , ๋ถ„์‚ฐ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์–ด์š”. ๐Ÿค
  • Quantum Machine Learning: Quantum Machine Learning์€ ์–‘์ž ์ปดํ“จํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด์—์š”. ์•„์ง ์ดˆ๊ธฐ ๋‹จ๊ณ„์ด์ง€๋งŒ, ๋ฏธ๋ž˜์—๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ถ„์•ผ์— ํ˜๋ช…์„ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”. โš›๏ธ

TPU for AI ๊ธ€์„ ๋งˆ์น˜๋ฉฐโ€ฆ ๐Ÿ’–

์ž, ์ด๋ ‡๊ฒŒ ํ•ด์„œ Google Colab์—์„œ TPU๋ฅผ ํ™œ์šฉํ•ด์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ๋ฌด๋ฃŒ๋กœ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ดค์–ด์š”! ๐Ÿค— TPU๋Š” ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต ์†๋„๋ฅผ ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œ์ผœ์ฃผ๋Š” ์•„์ฃผ ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋ž๋‹ˆ๋‹ค. ๐Ÿ‘ ํ•˜์ง€๋งŒ TPU๋ฅผ ์ œ๋Œ€๋กœ ํ™œ์šฉํ•˜๋ ค๋ฉด ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ฆฌ, ๋ฐ์ดํ„ฐ ๋กœ๋”ฉ ์ตœ์ ํ™”, ํ• ๋‹น๋Ÿ‰ ๊ด€๋ฆฌ ๋“ฑ ์‹ ๊ฒฝ ์จ์•ผ ํ•  ๋ถ€๋ถ„๋“ค์ด ๋งŽ๋‹ค๋Š” ๊ฒƒ๋„ ์žŠ์ง€ ๋งˆ์„ธ์š”! ๐Ÿค“

์ด ๊ธ€์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ๋”ฅ๋Ÿฌ๋‹ ์—ฌ์ •์— ์กฐ๊ธˆ์ด๋‚˜๋งˆ ๋„์›€์ด ๋˜์—ˆ๊ธฐ๋ฅผ ๋ฐ”๋ผ์š”. ๐Ÿ™ ๊ถ๊ธˆํ•œ ์ ์ด๋‚˜ ๋” ์•Œ๊ณ  ์‹ถ์€ ๋‚ด์šฉ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ๋Œ“๊ธ€๋กœ ๋ฌธ์˜ํ•ด์ฃผ์„ธ์š”! ๐Ÿ˜Š ๋”ฅ๋Ÿฌ๋‹์€ ๋Š์ž„์—†์ด ๋ฐœ์ „ํ•˜๋Š” ๋ถ„์•ผ์ด๊ธฐ ๋•Œ๋ฌธ์— ๊พธ์ค€ํžˆ ํ•™์Šตํ•˜๊ณ  ์ƒˆ๋กœ์šด ๊ธฐ์ˆ ์„ ์ตํžˆ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”. ๐Ÿ“š ๊ทธ๋Ÿผ ๋ชจ๋‘ ์ฆ๊ฑฐ์šด ๋”ฅ๋Ÿฌ๋‹ ํ•™์Šต ๋˜์„ธ์š”! ๐Ÿ’–


TPU for AI ๊ด€๋ จ ๋™์˜์ƒ

YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail
YouTube Thumbnail

TPU for AI ๊ด€๋ จ ์ƒํ’ˆ๊ฒ€์ƒ‰

์•Œ๋ฆฌ๊ฒ€์ƒ‰

Leave a Comment